United States Patent

US009483393B1

(12) (10) Patent No.: US 9,483,393 B1
Suttle et al. 45) Date of Patent: Nov. 1, 2016
(54) DISCOVERING OPTIMIZED EXPERIENCE 2006/0129892 Al* 6/2006 Diaconu et al. 714/38
CONFIGURATIONS FOR A SOFTWARE 2007/0234293 Al 10/2007 Noller et al.
2009/0307763 Al 12/2009 Rawlins et al.
APPLICATION 2010/0268511 Al* 10/2010 Kato et al. .cocooccnven.. 702/182
. . 2011/0231821 Al1* 9/2011 Sahni et al. 717/124
(71) Applicant: Amazon Technologies, Inc., Seattle, 2011/0296384 Al 12/2011 Pasternak
WA (US)
(72) Inventors: Ian C. Suttle, Tustin, CA (US); OTHER PUBLICATIONS
Timothy J. Berger, San Bernardino, Office action for U.S. Appl. No. 13/491,410, mailed on Oct. 16,
CA (US) 2013, Suttle, “Application Experiment System”, 69 pages.
(73) Assignee: islea(zl})g) Technologies, Inc., Seattle, * cited by examiner
Pri Examiner —1Li B Zh
(*) Notice: Subject to any disclaimer, the term of this rlr.nary xamn?er ' . e .
. . Assistant Examiner — Daniel Wei
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm — Lee & Hayes, PLLC
(21) Appl. No.: 14/098,023 (57 ABSTRACT
. Technologies are described herein for performing experi-
(22) Filed: Dec. 5, 2013 ments on a software application and identifying optimized
(51) Int.CI experience configurations for the software application. An
G0;$F 1 1/36 (2006.01) application experiment system receives an experiment con-
(52) US.Cl ’ figuration from a developer of the software application.
CPC) GOGF 11/3692 (2013.01) Based on the experiment configuration, the application
(53) Field ofClasmﬁcatlonSearch ’ experiment system determines an experiment strategy and
CPC ... GOGF 11/3664: GOGF 11/3668: GOGF /71 generates a set of experience configurations for testing.
USPC ’ 177104 Users available to participate in the experiment are identi-
See apphcatlon ﬁleforcompletes earch .I.l.i“story. fied, and the set of experience configurations are allocated to
user computing devices associated with the available users
(56) References Cited to configure instances of the software application executing

U.S. PATENT DOCUMENTS

on the user computing devices. Experiment data related to
the execution of the instances of the software application are
collected and analyzed by the application experiment system

120
A12A 1128 112N

7,036,008 B2* 4/2006 Raghavachari et al. 713/1 . . s s s
7127705 B2 10/2006 Chuistfort et al. to identify thf: optlmlzed experience configuration for the
7,299.382 B2 11/2007 Jorapur software application.
8,776,021 Bl 7/2014 Suttle et al.
8,972,770 B1* 3/2015 Odean et al.cc....... 714/1 20 Claims, 9 Drawing Sheets
100 108
106
104 APPLICATION
2 EXPERIMENT SYSTEM
EXPERIMENT | #]
DEVELOPER |, CONFia |~ EXPERIMENT
COMPUTING STRATEGY
SYSTEM -
Gig 1
i
102 /
[}
/
1164 7/] 12
EXPERIENCE EXPERIMENT EXPERIENCE | | EXPERIMENT | | EXPERIENCE EXPERIMENT
CONFIG DATA CONFIG DATA CONFIG DATA
‘ B4 v _/ ¥ ! ian
1132~ USER COMPUTING | [USER COMPUTING USER COMPUTING |—/
DEVICE DEVICE DEVICE
. 2»0-_.{ APPLICATION | | APPLICATION | H APPLICATION
1148

US 9,483,393 B1

Sheet 1 of 9

Nov. 1, 2016

U.S. Patent

N azh L vZLL
. arLl .
NOILVOI1ddV NOILVOI1ddV NOILYDITddY [™~
JIIA3A e JOoIA3A J3IA3Ad VoLl
\I\ ONILNdINOD H3SN ONILNdINOD H3SN ONILNAINOD ¥3sn [NIE
NPl 'Y [} A
/ , s |
v1va 914NOD viva 9I14NOD viva 914NOD
LININIG3dX3 FONIIHIAAX3 | | LNTNIHTIAX3 | | IONIIHIAX3 LININIHIIX3 JONIIHIdX3
14 — 7\. 7 rd
@N\r / | oN\F ! g / @N\F \%ﬂ
/ s
/ | NOLL
/]
! /
/ /s
« 8Ll / 7
:V Z P“\
\ W3LSAS
ADTIVHILS ONILNdWOD
ININIYIIX3 | oEnoo N ¥3d0oT3AIa
P INETTNEENE!
WALSAS LNINIYIJXT \ \
NOILVYOI1ddY b0
.\ a0l
801

20l

001

US 9,483,393 B1

Sheet 2 of 9

Nov. 1, 2016

U.S. Patent

—{ 13N7A 1312 8010v4 183l

— 21 3INTVA 1S3L 1 8010V 1531

1 NOILYOIHILNTal|
N NOLLYNNOIANOD 30NTINdX3

1 3NTVA 1S31 2 ¥010v4 1531

v80Z—~~J | 3nIvA 1S3L:1 ¥OLOVA 1531
aziz—~4 NOIL¥OI4ILNAI|
go11"~L_8 NOLLYNN9IINO 3ONTRIE

8802~ £3NTvA 15317 H0LOV4 1531

L{ 23NTvA 153171 ¥0LOV4 1631

» NOILYOIHILNTal|
- ¥ NOILYNDIINOD FONIIIdX3

¢ "OId

d480¢ —~

90C —~

[0z 13N A 1831
[0z L INTvA 1831
24010V 1S3l
[0z 3 3INTWA 1831
[0z 2 aNA 15|
[0z L 3NV 1531
» | 4OLOVH 1§31
| NOLLNGIMLSIA JONTIIdX|
- ALNOINA 3NTYAMOLOVS 1831
» 0L JAILOTNEO|
) NOLLYMNDIINOD INTWINIdX3

901

U.S. Patent

300,

\

Nov. 1, 2016 Sheet 3 of 9

PERFORM EXPERIMENT ON A
SOFTWARE APPLICATION

US 9,483,393 B1

C START)

I}

RECEIVE AN EXPERIMENT
CONFIGURATION

:

DETERMINE AN EXPERIMENT
STRATEGY (FIG. 4)

v

IDENTIFY A USER TO PARTICIPATE IN
THE EXPERIMENT

v

ALLOCATE AN EXPERIENCE
CONFIGURATION TO A USER
COMPUTING DEVICE ASSOCIATED
WITH THE USER ACCORDING TO THE
EXPERIMENT STRATEGY

y

COLLECT EXPERIMENT DATA RELATED
TO THE USE OF THE ALLOCATED
EXPERIENCE CONFIGURATION

ENOUGH DATA COLLECTED?

312

IDENTIFY OPTIMIZED EXPERIENCE
CONFIGURATION BY ANALYZING
EXPERIMENT DATA

N_314

|

C =D }\316

FIG. 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 9

DETERMINE EXPERIMENT STRATEGY

(START)

A 4

ESTIMATE AVAILABLE ~ [\02
NUMBER OF USERS WITHIN A |«

US 9,483,393 B1

400

TIME PERIOD T

ENOUGH USERS?

5

SELECT A
SUBSET OF
< EXPERIENCE
CONFIGURA-
414 TIONS

YES NO

TEST IN ONE ROUND?

s
A 4 Y

EXPERIMENT TIME

408\« T=T+AT

EXTEND

PERIOD?

REDUCE THE NO.
OF EXPERIENCE

c
A 4

ALLOCATE ALLOCATE EXPERIENCE ALLOCATE MULTIPLE
EXPERIENCE CONFIGURATIONS IN EXPERIENCE
CONFIGURATIONS MULTIPLE ROUNDS CONFIGURATIONS TO
IN ONE ROUND SOME USERS
416
A 4

C END)\4}2

FIG. 4

US 9,483,393 B1

Sheet 5 of 9

Nov. 1, 2016

U.S. Patent

808 Al ADTLYHLS LNINIYAXT g o 905 “—Ill ADILYHLS ININIYIdXT
8LS N 9I14NOO FONFIHIdX3
X Q3ZINILAO TTVHINO
BLS N 2x 9I4NOO FONIIIIdX3
@3zINILdO TIVHIA0 % ax ‘ZX e
Zx 9X ‘X ‘PX '€X 'ZX ‘LX ! X SX 'PX ‘2X z
OI4ANOD "dX3 OIINOD "ON X EX TX IX ’
JONIHIIX3 aNpoy
a3zIlLdo w_h :ﬂ 9IINOD dX3 SIINOD "ON
J« LG 2lg a3zInILdo JONIIYIdX3 aNnoy
oVa olg “\Liig \zig
08
. Il ADILVHLS INFNIYIIXT 208 | ADTLVHLS INIWIRITAX3
wE\/ _ 815 N\ o 9I14NOD FONIIHIAdX3
{(9X) OIMLIAW T8O | o\ S NI NTdXT d3zINILdO TIvY3A0
(2X) OMLIW PEO} | "oz 46 TIvaiano
40 ¥31139 oYY X 9X ‘TX €
X 9X ‘GX ‘¥X 4 9X 9X ‘GX ‘¥X 4
X EX TX IX ! X EX TX ‘IX |
OIINOD "dX3 SI4NOD "ON SIANOD dX3 SI4NOD "ON
omw__\,__wmo mozm._ﬂmumxw oz:ﬂOm ouN__\,_;mmu uozm_w._mmxw oz::mm
9lg v1g Zls 9lc A Zlo
ors NI oxex px ex ex Xl =X "HOLOVA 1SALN_ g0z

U.S. Patent Nov. 1, 2016 Sheet 6 of 9 US 9,483,393 B1

NEXT TEST NEXT TEST
0\~ VALUETOBE ~ VALUETOBE 508
TESTED 22 TESTED 22

ey 7 i
K

TEST VALUE
DEFAULT 612 TESTED
602’\" TEST VALUE TEST VALUE \, 604
Y Z1
624 628

62? % 626 630

REGION2 ¢ REGION4 ¢
REGION 1 REGION 3 REGION 5

| | -
|
\'s Z TEST VALUE

TEST VALUE
RANGE N\ 620

ol

FIG. 6B

US 9,483,393 B1

Sheet 7 of 9

Nov. 1, 2016

U.S. Patent

N¥0.Z
g

ov04,_|

av0.
e

<voml

LINJANOYHIANT

NOILNDFX3 a3.LNaidLsId

I~

d31IN30 V1vd

904

L~

b~

431N30 v1ivd

b~

d31IN3O V1vd

A

—

d31N3D v1vd

A

<0/

MHOMLAN

ZOld

ol

(

/

W3LSAS ONILNNOD
43d4013A3d

004

US 9,483,393 B1

Sheet 8 of 9

Nov. 1, 2016

U.S. Patent

808

808

20/ MYOMLIN OL
A
H3ALNdINOD ¥IAY3S 44208
808__J}~
3018 HIAOVYNVYIN
dIOVNYI J | | 3oNvLSNI
HONNY13DONV.LSNI > 9108
SALNdNOD JONVISNI
08T y3aaw3s
_ N \ 4
| HFOVNYI 08 ¥ AN s0s_LAf
JONVLSNI sav H T s01 HIADVYNYIA
MYOMLAN JONVLSNI avos
| V3V Vo0
¥3INdNoD L mouwmwmz_ H3ALNANOD JONVLSNI
SERNSER g208__~ H3IAW3S
+azog
N g0s_ LA
HIAOVNVYIN JAOVYNVYIN
JONVLSNI o | 3ONVLSNI
r708 > VY708
¥aLnanoo H | FONVASH 0L vzos_k w3indwoo H | FONVISN
EERYSELS Y31IN3ID viva HIAYIS

U.S. Patent Nov. 1, 2016 Sheet 9 of 9 US 9,483,393 B1

LOCAL AREA

NETWORK 920

A

y
912 =T NETWORK INPUT/ g 916
INTERFACE OUTPUT
CONTROLLER CONTROLLER
- A 7}
/) 4 \ 4
902 CHIPSET 1LV 906
A A A A
y y \ 4 \ 4
STORAGE H o
CPUES) [RAM [ROM {5\ TROLLER
{ £ {
\ \ \ A
904 908 910 Q’/
OPERATING 930
SYSTEM
900
APPLICATION 108
EXPERIMENT
SYSTEM

FIG. 9

US 9,483,393 Bl

1
DISCOVERING OPTIMIZED EXPERIENCE
CONFIGURATIONS FOR A SOFTWARE
APPLICATION

BACKGROUND

In order to provide a better experience to software appli-
cation users, developers might update or make changes to
software applications by adding/changing features or modi-
fying designs. When deployed to users, however, those
updates or changes might not achieve the initially intended
goal. For example, a change in the difficulty level of a game
application designed to engage a user more in the game
might lead to a reduction in the amount of time a user spends
playing the game, which may be because the user finds the
updated game too hard or too simple to play. To reduce the
uncertainty of the impact that updates to a software appli-
cation may have on users, experiments on the software
application, such as “A/B” testing, may be employed to test
the effects of changes to a software application on a group
of users before applying the changes to the software appli-
cation to all users.

Most of the existing tools for software application experi-
ments support comparisons between two versions of a
software application feature: a control version/variation,
referring to the original version of the feature, and a test
version/variation, referring to the new version of the feature.
While these tools might be able to satisfy the needs for
software application experiments where only two versions/
variations of a feature are involved, they become less
efficient when the number of variations of software appli-
cation features gets larger. For example, to test more than
two variations of a software application feature, the devel-
oper might have to run a software application experiment
tool multiple times and manually select the variations to be
tested each time. When the number of variations gets larger,
the process might become even more cumbersome and
time-consuming for the software application developer.

The disclosure made herein is presented with respect to
these and other considerations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram showing aspects of one
mechanism disclosed herein for performing experiments on
a software application and identifying optimized experience
configurations for the software application;

FIG. 2 is a data structure diagram illustrating a number of
data elements contained in an experiment configuration and
an experience configuration, according to embodiments pre-
sented herein;

FIG. 3 is a flow diagram showing one illustrative routine
for performing experiments on a software application and
identifying optimized experience configurations for the soft-
ware application, according to one embodiment disclosed
herein;

FIG. 4 is a flow diagram showing one illustrative routine
for determining an experiment strategy for a software appli-
cation, according to one embodiment disclosed herein;

FIG. 5 is a diagram illustrating several example assign-
ments of experience configurations to different rounds of an
experiment in an experiment strategy, according to embodi-
ments disclosed herein;

FIG. 6A is a diagram illustrating selecting a test value for
a round of an experiment based on an objective metric
obtained from a previous round of the experiment, according
to embodiments disclosed herein;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6B is a diagram illustrating dividing a range of test
values into multiple regions for testing in an experiment on
a software application, according to embodiments disclosed
herein;

FIG. 7 is a system and network diagram that shows one
illustrative operating environment in which the embodi-
ments described herein may be implemented;

FIG. 8 is a computing system diagram that illustrates one
configuration for a data center that implements aspects of the
concepts and technologies disclosed herein for performing
experiments on a software application and identifying opti-
mized experience configurations for the software applica-
tion, according to one embodiment disclosed herein; and

FIG. 9 is a computer architecture diagram showing one
illustrative computer hardware architecture for implement-
ing a computing device that might be utilized to implement
aspects of the various embodiments presented herein.

DETAILED DESCRIPTION

The following detailed description is directed to technolo-
gies for performing experiments on a software application
and identifying optimized experience configurations for the
software application. Utilizing the concepts and technolo-
gies described herein, experiments for testing multiple varia-
tions for various features or test factors of a software
application can be automatically performed and optimized
experience configurations can be identified without further
intervention from the developer of the software application.
The identified optimized experience configuration might
then be automatically deployed to user computing devices
and/or be sent to the developer of the software application
for further action.

According to one aspect presented herein, a computer-
implemented mechanism is disclosed for performing an
experiment on a software application to identify optimized
experience configurations for the software application. In
particular, a developer of the software application might
send an experiment configuration for the software applica-
tion to an application experiment system. The experiment
configuration might include one or more test factors for the
software application, a set of test values available for each
of the test factors, and an objective metric to be optimized.
Based on the experiment configuration and other aspects
such as the number of users available for the experiment, the
application experiment system might determine an experi-
ment strategy to be utilized to carry out the experiment.

The experiment might proceed by identifying a user
computing device and allocating an experience configura-
tion to an instance of the software application running on the
user computing device. The user computing device might be
identified through receiving, at the application experiment
system, a request for executing the software application
from the user computing device. The application experiment
system might also select a user computing device according
to the experiment strategy and proactively push the experi-
ence configuration to the selected user computing device.
The experience configuration might be generated based on
the experiment configuration, such as the available test
values for each of the test factors. The experience configu-
ration to be allocated to a particular user computing device
might be determined dynamically or may be specified in the
experiment strategy.

The allocated experience configuration might be utilized
to configure the software application on the user computing
device. While the software application is running at the user
computing device, experiment data related to the execution

US 9,483,393 Bl

3

of the software application might be collected by the appli-
cation experiment system. The experiment data might
include, but are not limited to, interactions of the user with
the software application, operations or actions performed by
the user during and/or after the execution of the software
application, the time the user has spent using the software
application, and other data. The application experiment
system may then analyze the experiment data obtained from
one or more user computing devices and identify an opti-
mized experience configuration for the software application.
Additional details regarding the various components and
processes described above for performing experiments on a
software application and identifying optimized experience
configurations for the software application will be presented
below with regard to FIGS. 1-7.

It should be appreciated that the subject matter presented
herein may be implemented as a computer process, a com-
puter-controlled apparatus, a computing system, or an article
of manufacture, such as a computer-readable storage
medium. While the subject matter described herein is pre-
sented in the general context of program modules that
execute on one or more computing devices, those skilled in
the art will recognize that other implementations may be
performed in combination with other types of program
modules. Generally, program modules include routines, pro-
grams, components, data structures, and other types of
structures that perform particular tasks or implement par-
ticular abstract data types.

Those skilled in the art will also appreciate that aspects of
the subject matter described herein may be practiced on or
in conjunction with other computer system configurations
beyond those described herein, including multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, hand-
held computers, personal digital assistants, e-readers, cellu-
lar telephone devices, special-purposed hardware devices,
network appliances, and the like. The embodiments
described herein may be practiced in distributed execution
environments, where tasks are performed by remote pro-
cessing devices that are linked through a communications
network. In a distributed execution environment, program
modules may be located in both local and remote memory
storage devices.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof, and
that show, by way of illustration, specific embodiments or
examples. The drawings herein are not drawn to scale. Like
numerals represent like elements throughout the several
figures (which may be referred to herein as a “FIG.” or
“FIGS.”).

FIG. 1 is a system diagram that shows a system 100 for
performing experiments on a software application and iden-
tifying optimized experience configurations for the software
application according to embodiments disclosed herein. The
system 100 might include an application experiment system
(“AES”) 108 for managing experiments on software appli-
cations and identifying the optimized experience configu-
rations. According to embodiments, the application experi-
ment system 108 might include web servers, application
servers, network appliances, dedicated computer hardware
devices, personal computers (“PC”), or any combination of
these and/or other computing devices known in the art. The
application experiment system 108 may be accessible
through a network 110, which might be a local-area network
(“LAN”), a wide-area network (“WAN™), the Internet, or

10

15

20

25

30

35

40

45

50

55

60

65

4

any other networking topology known in the art that enables
communications with the application experiment system
108.

According to embodiments, the application experiment
system 108 might allow one or more software application
developers 102 to define experiments and might administer
the implementation of the experiments. In embodiments, an
experiment on a software application might include a series
of tests performed on instances of the software application,
and each test may differ from one another in certain aspects.
For example, these tests may differ in terms of application
settings, also referred to herein as “experience configura-
tions” 116 of the software application, such as parameter
values, user interface layouts/colors, add-on features,
embedded advertisements, incentives for user actions, and/
or other aspects.

A developer 102 may initiate an experiment on a software
application by sending an experiment configuration 106 to
the application experiment system 108 through a developer
computing system 104. The developer computing system
104 might be a computer utilized by the developer 102,
which might be a server computer, a desktop or laptop
personal computer, a tablet computer, a wireless telephone,
a personal digital assistant (“PDA”), an e-reader, a game
console, a set-top box, or any other computing device
capable of connecting to the network 110 and communicat-
ing with the application experiment system 108. According
to embodiments, the experiment configuration 106 sent from
the developer computing system 104 might contain infor-
mation that defines the experiment. By way of example, and
not limitation, the experiment configuration 106 might
include the software application to be tested, various fea-
tures and/or feature values to be tested in the experiment,
metrics for quantitatively measuring the experiment results,
and other information that may be used to set up the
experiment.

Based on the experiment configuration 106, the applica-
tion experiment system 108 may generate a set of experience
configurations. Each of the experience configurations may
be allocated to one or more user computing devices and be
used to configure an instance of the software application
running on the corresponding user computing device. The
allocation of the experience configurations to the user com-
puting devices might be performed by following an experi-
ment strategy 118 generated by the application experiment
system 108. The generation of the experiment strategy 118
might be based on the experiment configuration 106 and
other factors such as the number of users available to
participate in the experiment.

As illustrated in FIG. 1, the application experiment sys-
tem 108 may send experience configurations 116 A-116N
(which may be referred to individually as “an experience
configuration 116 or collectively as “the experience con-
figurations 116”) to user computing devices 114A-114N
(which may be referred to individually as “a user computing
device 114” or collectively as “the user computing devices
114”). Each of the user computing devices 114 might be
associated with a user 112A-112N (which may be referred to
individually as “a user 112" or collectively as “the users
112”) and might have an instance of the software application
120 running on it. The user computing device 114 might be
a computer utilized by the user 112, which might be a server
computer, a desktop or laptop personal computer, a tablet
computer, a wireless telephone, a PDA, an e-reader, a game
console, a set-top box, or any other computing device
capable of connecting to the network 110 and communicat-
ing with the application experiment system 108.

US 9,483,393 Bl

5

Allocating the experience configuration 116 to the corre-
sponding user computing device 114 might be triggered and
implemented in various ways. For example, a user comput-
ing device 114 might have already had an instance of the
software application 120 installed thereon. When the user
112 of the user computing device 114 wants to start the
instance of the software application 120, he or she might
submit a request for executing the software application 120
through the user computing device 114 to the application
experiment system 108 or any other entities for managing
the execution of the software application 120. Once the
request is received, the application experiment system 108
may identify the user 112 as a participating user of the
experiment and allocate an experience configuration 116 to
the user computing device 114. In another scenario, the
application experiment system 108 might proactively send
the experience configurations 116 to several user computing
devices 114. When the software application 120 is to be
executed on the user computing devices 114, the allocated
experience configuration 116 may then be utilized to con-
figure the instance of the software application 120 on the
corresponding user computing device 114.

In a further example, the user computing device 114 might
not have the software application 120 pre-installed, and the
user 112 of the user computing device 114 might send a
request for a copy of the software application 120 to the
application experiment system 108 or other responsible
entities. In this case, a copy of the requested software
application 120 along with or configured with an experience
configuration 116 may then be sent to the user computing
device 114 for execution. It should be appreciated that the
above examples are provided by way of illustration only and
should not be construed as limiting. Other ways of allocating
the experience configuration 116 may be possible. For
example, regardless of the instance of the software applica-
tion 120 on the user computing devices 114, different
versions of the software application 120 that implement the
different experience configurations 116 might be distributed
to user computing device 114. It should be further appreci-
ated that while FIG. 1 illustrates an experience configuration
116 is sent to one user computing device 114, the experience
configurations 116 may be, and typically are, sent to mul-
tiple user computing devices for testing.

Once the software application 120 is configured according
to the experience configuration 116 and running on the user
computing device 114, experiment data 126 related to the
execution of the software application 120 may be collected
by the application experiment system 108. By way of
example, and not limitation, the experiment data 126 may
include interactions of the user 112 with the software
application 120, operations or actions performed by the user
112 during and/or after the execution of the software appli-
cation 120, the time the user 112 spent with the software
application 120, and other data. The collected experiment
data 126 may then be transmitted to the application experi-
ment system 108. According to embodiments, the applica-
tion experiment system 108 might analyze the collected
experiment data 126 to identify an optimized experience
configuration 116 for the software application. Depending
on a preference specified by the developer 102, the identified
optimized experience configuration 116 may be automati-
cally deployed to the user computing devices 114 and/or be
sent to the developer 102 for further actions.

According to various embodiments, the experiment may
be initiated by the developer 102 calling application pro-
gram interfaces (APIs) provided by the application experi-
ment system 108 and/or through user interfaces presented by

20

25

30

40

45

50

55

6

the application experiment system 108 on the developer
computing system 104. In another implementation, the func-
tionalities of the application experiment system 108 might
be provided as a service, such as a web service, that can be
accessed by the developer computing system 104 to launch
the experiment and to receive experiment results. Additional
aspects regarding the application experiment system 108 can
be found in U.S. patent application Ser. No. 13/491,410,
filed on Jun. 7, 2012 and entitled “Application Experiment
System,” which is expressly incorporated herein by refer-
ence in its entirety Further details regarding the operation of
the application experiment system 108 will be provided
below with regard to FIGS. 2-4.

Referring now to FIG. 2, one example data structure for
implementing the experiment configuration 106 and the
experience configuration 116 will be described. As briefly
mentioned above, an experiment configuration 106 might
contain information that defines various aspects of the
experiment. In one embodiment, the experiment configura-
tion 106 might include one or more features to be tested,
called “test factors” 208A-208B (which may be referred to
individually as “a test factor 208" or collectively as “the test
factors 208”). Each test factor 208 may have several test
values 210 to choose from. In the example illustrated in FI1G.
2, test factor 1 208A has test value 1 to test value K
available, and might adopt one of them as its value in a
particular setting or configuration of the software application
120. Similarly, test factor 2 208B has test value 1 to test
value L available and may adopt one of them as its value in
a setting or configuration of the software application 120. It
should be understood that the test value 210 might be
quantitative, such as numeric values, or be qualitative, such
as categorical data, like type, shape, etc.

Taking software game applications as an example, a test
factor 208 might be the difficulty level of the game. The test
values 210 for the test actor 208 may range from 1 to 10,
which means a particular setting of the game may adopt one
of the difficulty levels 1 to 10, such as a difficulty level of 5.
Another test factor 208 may be the background color of a
user interface of the game application 120, and the test
values 210 for the background color test factor 210 might be
“blue,” “red,” “brown,” or “grey.” One of these colors may
be chosen for an instance of the game application 120. Other
test factors 208 may include, but are not limited to, user
interface layout, control button shape/color, add-on features,
embedded advertisements, incentives for user actions, in-
game purchase options, and others.

While FIG. 2 illustrates that each of the test values 210 for
each test factor 208 is explicitly specified in the experiment
configuration 106, it should be appreciated that other ways
of representing the test values 210 for test factors 208 might
be employed. For example, if a test factor 208 is a numerical
variable, its corresponding test values 210 might be repre-
sented as a numerical range along with a step size. The set
of test values 210 might then be generated based on the
range and the step size. Continuing the above example of the
game application with the difficulty level of the game being
a test factor 208, the test values 210 for the test factor 208
might be represented as a range [1:10] along with a step size
1 in the experiment configuration 106. This representation of
the test factor 208 and the test value 210 would have similar
effects as directly listing the difficulty levels [1, 2,3, .. .,
10] as the test values 210 in the experiment configuration
106.

As discussed above, based on the experiment configura-
tion 106, the application experiment system 108 might
generate one or more experience configurations 116 for

US 9,483,393 Bl

7

testing. Each of the experience configurations 116 might
include an identification 212 to uniquely identify the expe-
rience configuration 116. Each experience configuration 116
might also specify each of the test factors 208 selecting one
of the test values 210 as its value. For example, in the
experience configuration 116A shown in FIG. 2, test factor
1 208A takes test value 2 from the set of test values 210
associated with test factor 1. The test factor 2 208B adopts
test value 3 from the set of test values 210 associated with
test factor 2. After the experience configuration 116A is
allocated and utilized to configure an instance of the soft-
ware application 120, the values of the test factors 208 A and
208B in that instance of the software application 120 will be
set to the corresponding test values 210 specified by the
experience configuration 116A. Other experience configu-
rations 116 might be generated similarly.

According to one embodiment, the experience configu-
rations 116 might be generated by exhaustively listing all the
combinations of the test values 210 of the test factors 208,
resulting in a complete experience configuration set. For
example, in an experiment where the developer 102 defines
two test factors 208, two test values 210 for one of the test
factors 208 and three test values 210 for the other test factor
208, there would be six experience configurations 116 in a
complete experience configuration set for the experiment,
each experience configuration 116 including one combina-
tion of the test values 210 for the two test factors 208.

In another embodiment, a subset of the complete experi-
ence configuration set might be generated utilizing a portion
of the test factors 208 and/or test values 210. As will be
discussed in detail with regard to FIG. 4, in some scenarios,
it may not be feasible to test all the experience configura-
tions 116 in the complete experience configuration set. In
such a situation, selecting and testing a subset of experience
configurations 116 might be more reasonable. To facilitate
the selection of the subset of experience configurations 116,
the developer 102 might also include a test factor/value
priority 204 field in the experiment configuration 106.

The test factor/value priority 204 field might specify
priorities assigned to test factors 208 and/or test values 210.
For instance, a test factor/value priority 204 may specity that
test factor 1 208A shown in FIG. 2 has a higher priority than
test factor 2 208B, and test value 1 and test value 2 for test
factor 1 have a higher priority than the rest of the test values.
As a result, experience configurations 116 that include (test
factor 1:test value 1) or (test factor 1:test value 2) might be
generated with a higher priority than other experience con-
figurations 116, and thus might be tested first.

In order for the application experiment system 108 to
identify the optimized experience configuration 116, an
objective metric 202 that is to be optimized in the experi-
ment might also be included in the experiment configuration
106. In the above game application example, the objective
metric 202 might be the length of time a user spends on
playing the game, and an experience configuration 116 that
maximize the length of play time might be identified as the
optimized experience configuration 116. Other metrics
might be utilized as the objective metric 202 including, but
not limited to, the percentage of users making a purchase if
given the in-game purchase option, the percentage of users
sharing the game to a friend, the percentage of users clicking
on an advertisement link embedded in the game, and others.
It should be appreciated that the selection of objective metric
202 might be related to the type of the software application
120 to be tested, and the purpose of the experiment. Thus,
the objective metrics 202 used in experiments on different
software applications might be different.

20

30

35

40

45

50

55

60

65

8

The experiment configuration 106 might also include
various other data elements that might be utilized to define
and carry out the experiment. For example, as illustrated in
FIG. 2, the experiment configuration 106 may also include
an experience distribution setting 206, which specifies the
percentage of user computing devices 114 receiving a spe-
cific experience configuration 116. Other data, such as
expected experiment duration, desirable user profiles for
users participating in the experiment, and a secondary objec-
tive metric may also be included in the experiment configu-
ration 106. It should be appreciated that additional data
elements may be included in the experiment configuration
106 and experience configuration 116 beyond those
described herein, and that not every data element described
will be available for every experiment configuration 106 and
experience configuration 116.

FIG. 3 is a flow diagram showing aspects of one illustra-
tive routine 300 for performing experiments on a software
application 120 and identifying optimized experience con-
figurations for the software application 120, according to
one embodiment disclosed herein. In some implementations,
the routine 300 is performed by the application experiment
system 108 described above in regard to FIG. 1. It should be
appreciated, however, that the routine 300 might also be
performed by other modules and/or components or other
entities in the system illustrated in FIG. 1.

It should also be appreciated that the logical operations
described herein with respect to FIG. 3 and the other figures
are implemented (1) as a sequence of computer implemented
acts or program modules running on a computing system
and/or (2) as interconnected machine logic circuits or circuit
modules within the computing system. The implementation
of the various components described herein is a matter of
choice dependent on the performance and other require-
ments of the computing system. Accordingly, the logical
operations described herein are referred to variously as
operations, structural devices, acts, or modules. These
operations, structural devices, acts, and modules may be
implemented in software, in firmware, in special purpose
digital logic, and any combination thereof. It should also be
appreciated that more or fewer operations may be performed
than shown in the FIGS. and described herein. These opera-
tions may also be performed in parallel, or in a different
order than those described herein.

The routine 300 begins at operation 302, where the
application experiment system 108 receives an experiment
configuration 106 for a software application 120 to be tested.
As mentioned above, a developer 102 might send the
experiment configuration 106 through a user interface pre-
sented by the application experiment system 108, by calling
APIs exposed by the application experiment system 108 or
by accessing a service implementing the functionalities
provided by the application experiment system 108.

From operation 302, the routine 300 proceeds to operation
304, where an experiment strategy 118 might be determined
based on the experiment configuration 106. The experiment
strategy 118 might include information that can be utilized
to guide the implementation of the experiment. Specifically,
an experiment strategy 118 might include, but is not limited
to, the experience configurations 116 to be tested in the
experiment, the number of rounds that the experiment may
be carried out, the set of experience configurations 116 to be
included in each round of the experiment, a user assignment
for allocating experience configurations 116 to user com-
puting devices 114 associated with corresponding users 112,
and other data. The experiment strategy 118 may then be
utilized by the application experiment system 108 to allocate

US 9,483,393 Bl

9

the experience configurations 116 to user computing devices
114. Additional details regarding determining the experi-
ment strategy 118 are provided below with regard to FIG. 4.

From operation 304, the routine 300 proceeds to operation
306, where a user 112 is identified or selected to participate
in the experiment. As discussed above, a user 112 might
submit through a user computing device 114 a request for
executing the instance of the software application 120 on the
user computing device 114. Such a request might trigger the
application experiment system 108 to identify the user 112
as a participating user of the experiment. Additionally, or
alternatively, the application experiment system 108 might
select a user who might be interested in executing the
software application 120 on his/her user computing device
114. The selection of such a user might be based on, for
example, a history of the user behavior or preference in
requesting software applications, a profile of a user, and/or
other information maintained by the application experiment
system 108 or provided by the developer 102.

The routine 300 then proceeds to operation 308, where an
experience configuration 116 might be allocated to the user
computing device 114 associated with the identified partici-
pating user 112. If the user computing device 114 has an
instance of the software application 120 installed thereupon,
the application experiment system 108 might only send the
experience configuration 116 to the user computing device
114. In another scenario, where the software application 120
might not have been installed on the user computing device
114, the allocation of the experience configuration 116 might
include deploying the software application 120 to the user
computing device 114 along with or configured using the
experience configuration 116.

The allocation of the experience configuration 116 might
occur in response to requests sent by the user 112 through
the user computing device 114 or might be initiated by the
application experiment system 108 to push the experience
configuration 116, along with an instance of the software
application 120 if necessary, to the user computing device
114. It should be appreciated that allocating the experience
configuration 116 to a user computing device 114 described
above is for illustration only, and should not be construed as
limiting. Other ways of allocating the experience configu-
ration 116, such as by sending to the user computing device
114 a link to retrieve the experience configuration 116 from
a storage location, might also be employed.

The experience configuration 116 might be utilized by the
user computing device 114 to configure the instance of the
software application 120 to a specific setting defined in the
experience configuration 116 upon execution. The user
computing device 114 may then execute the software appli-
cation 120 and the user 112 might perform various opera-
tions on the software application 120, such as playing a
game if the software application 120 is a game application
or reading a document if the software application 120 is a
document viewer.

From operation 308, the routine 300 proceeds to operation
310, where the application experiment system 108 might
collect experiment data 126 related to the use of the expe-
rience configuration 116, such as the execution of the
software application 120 configured by using the experience
configuration 116. As discussed above, the experiment data
126 might include interactions of the user with the software
application, operations or actions performed by the user
during and/or after the execution of the software application,
the time the user spends on the software application, and
other data.

10

15

20

25

30

35

40

45

50

55

60

65

10

From operation 310, the routine 300 proceeds to operation
312, where a determination is made as to whether enough
experiment data 126 have been collected. In one embodi-
ment, the collected experiment data 126 might be considered
as enough if the experiment data 126 can provide statisti-
cally significant results, i.e., the objective metrics 202
obtained for different experience configurations 116 are not
different because of random variations. There are various
mathematical formulations known in the art to quantitatively
define the statistical significance and to determine if a result
is statistically significant. It is intended that this application
include all such definitions and determinations of statisti-
cally significant.

If it is determined that the collected experiment data 126
is not enough to for analysis, the routine 300 returns back to
operation 306, where another user might be identified to
participate in the experiment. If it is determined at the
operation 312 that the collected data is enough for analysis,
the routine 300 proceeds to operation 314, where the experi-
ment data 126 might be analyzed and an optimized experi-
ence configuration 116 might be determined. In one embodi-
ment, the optimized experience configuration 116 might be
defined as the experience configuration 116 that leads to a
desired value of the objective metric 202. For example, if the
objective metric 202 is the length of time a user spends on
playing the game, the optimized experience configuration
116 might be determined to be the one, out of a set of
experience configurations 116, that engages a user in playing
the game for the longest period of time. In other examples,
the optimized experience configuration 116 might be the
one, out of a set of experience configurations 116, that
results in the largest purchase rate of a product through an
in-application purchase option, provides the highest rate of
a user sharing the application with a friend, leads to the
highest click-through rate of a link provided in the software
application, or others. From operation 314, the routine 300
proceeds to operation 316, where it ends.

In another implementation, the routine 300 might also
include a determination operation (not shown) for determin-
ing whether a time period specified by the developer 102 or
otherwise determined by the application experiment system
108 has elapsed. If it is determined that the time period has
not passed, the routine 300 would continue as normal;
otherwise, the routine 300 would end with or without
performing the operation 314 for identifying the optimized
experience configuration 116. It should be appreciated that
other additional operations might be added in routine 300
depending on the experiment configuration 106 and/or the
experiment strategy 118.

FIG. 4 is a flow diagram showing a routine 400 for
determining an experiment strategy 118 to be utilized in the
experiment of the software application 120, according to one
embodiment disclosed herein. In some implementations, the
application experiment system 108 described above in
regard to FIG. 1 may perform the routine 400. It should be
appreciated that the routine 400 might also be performed by
other modules and/or other entities in the system 100.

The routine 400 begins at operation 402, where the
number of users available to participate in the experiment
within a time period T might be estimated. The estimation
might be performed based on a history of users requesting
the software application 120 or similar software applica-
tions. Such a history might be provided by the developer 102
or obtained from an entity that is responsible for managing
user requests for software applications. Thus, a user might
be counted as an available user if, based on the history data,
the likelihood that the user requests the software application

US 9,483,393 Bl

11

120 is high. In a further embodiment, a user might be
considered as an available user if his/her profile matches the
desirable user profiles for participating users provided in the
experiment configuration 106, and his/her likelihood of
executing the software application 120 is high.

The time period T for estimating the number of available
users might be specified by the developer 102, for example,
in the experiment configuration 106 as the time period
during which the experiment expect to complete. Alterna-
tively, or additionally, the time period T might be determined
by the application experiment system 108 as a reasonable
time period to finish the experiment.

From operation 402, the routine 400 proceeds to operation
404, where a determination is made as to whether the
estimated number of users available for the experiment is
large enough or not. In one embodiment, the estimated
number of users might be considered as large enough if
statistically significant results can be obtained based on the
number of available users as discussed above. In another
embodiment, the estimated number of user might be deter-
mined as large enough if it is higher than a pre-determined
threshold specified by the developer 102, for instance, in the
experiment configuration 106.

If, at operation 404, it is determined that the estimated
number of users available for the experiment is large
enough, the routine 400 proceeds to operation 414, where a
further determination might be made as to whether the
experiment is to be performed in one round or in multiple
rounds. This determination might be based on the total
number of experience configurations 116 to be tested, the
number of concurrent tests supported by the application
experiment system 108, and/or other factors. For example, if
there are three experience configurations 116 to be tested, it
might be efficient to test all three experience configurations
116 in one round. However, if there are more than 10
experience configurations 116 to be tested, testing these 10
experience configurations 116 in multiple rounds might be
more manageable than testing them all in one round.

If, at operation 414, it is determined that the experiment
is to be tested in one round, the routine 400 proceeds to
operation 416 where an experiment strategy 118 might be
generated to allocate the experience configurations 116 in
one round. If, at operation 414, it is determined that the
experiment is to be tested in multiple rounds, the routine 400
then proceeds to operation 418 where an experiment strategy
118 might be generated to allocate the experience configu-
rations 116 in multiple rounds. The experiment strategy 118
might further include the specific experience configurations
116 to be tested in each round. FIG. 5 illustrates several
example of assigning experience configurations 116 to dif-
ferent rounds of the experiments.

The example experiment shown in FIG. 5 has one testing
factor X 208, and the testing factor X 208 has six test values
210: {x,, X,, X3, X4, X5, X¢}. Bach table shown in FIG. 5
corresponds to one possible experiment strategy 118: experi-
ment strategy [502, experiment strategy 11 504, experiment
strategy 111 506, and experiment strategy IV 508. Each table
contains a column 512 representing the round sequence
number and a column 514 listing the experience configura-
tions 116 to be tested in each round of the experiment. Since
the example experiment shown in FIG. 5 only contains one
testing factor X 208, the experience configurations 116 to be
tested may be represented using the corresponding test
values 210, as illustrated in FIG. 5. Each table further
includes a column 516 listing the optimized experience
configuration 116 obtained in each round, which might be
considered as sub-optimized experience configurations, and

25

30

35

40

45

12

an entry 518 representing the overall optimized experience
configuration obtained for the experiment.

The experiment strategy 1 502 illustrated in FIG. 5 rep-
resents one type of strategy for testing experience configu-
rations 116 in multiple rounds. In this strategy, the experi-
ence configurations 116 might be separately tested in
multiple rounds and optimized experience configurations
116 from each round might then be tested in an extra round
to identify the overall optimized experience configuration
116. For example, in round 1 of the experiment strategy I
502, three experience configurations 116 might be tested:
{Xy, X, X3} and x, might be identified as the optimized
experience configuration 116 for round 1. In the second
round, experience configurations 116 {x,, X5, x4} might be
tested and x, might be identified as the optimized experience
configuration 116 in round 2.

To determine an overall optimized experience configura-
tion 116, a third round of experimentation might be per-
formed by testing the optimized experience configurations
116 from previous rounds {x,, xs}. The overall optimized
experience configuration 116 might be determined to be the
optimized experience configuration 116 from the third
round, for example, X, in the experiment strategy I 502. This
extra round of experiment might help to eliminate the
difference between different rounds caused by factors such
as seasonality, or the day of the week. Alternatively, the
overall optimized experience configuration 116 might be
determined by comparing the objective metrics of the opti-
mized experience configurations 116 from previous rounds
of experiment without an extra round of experiment, as
illustrated in the experiment strategy 11 504. In this experi-
ment strategy, the overall optimized experience configura-
tion 116 might be determined to be the one resulting in a
better objective metric.

In another embodiment, the experiment strategy 118
might select the optimized experience configuration 116
from one round to be part of the experience configurations
116 tested in an immediate next round, as illustrated in the
experiment strategy 111 506. In the experiment strategy III
506, the optimized experience configuration 116 identified
in round 1, x,, is placed in the second round for testing again
along with other experience configurations 116, and is
identified as optimized experience configuration 116 in
round 2. As such, X, is tested again in round 3 and is
determined to be the optimized experience configuration 116
in round 3. In this type of experiment strategy, the optimized
experience configuration 116 from the last round of the
experiment may be selected as the overall optimized expe-
rience configuration 116 listed in the entry 518.

Under the framework presented in FIG. 5, testing all the
experience configurations 116 in one round, as might be
specified in the strategy generated in operation 416, may be
presented as experiment strategy IV 508 as shown in FIG. 5.
Furthermore, it should be understood that in each round of
the experiment, one of the experience configurations 116
might be identified as the control variation of the experiment
and the rest might be treated as test variations. In some
scenarios, the control variation might correspond to the
default experience configuration 116 of the software appli-
cation 120, in which no changes have been made. In other
scenarios, the control variation might correspond to an
experience configuration 116 that has been tested before,
such as x, in round 2 of the experiment strategy III 506.

In another embodiment, the selection of the experience
configuration 116 for a round of experiment might be
determined based on the experiment data, such as the
objective metrics calculated from the experiment data

US 9,483,393 Bl

13

obtained from previous rounds. Using the game software
application described above as an example, the selection of
test values for succeeding rounds of experiments might be
determined based on the change of the objective metric of
the test variation compared with that of the control variation
with default difficulty level. For example, in the first round
of the experiment, a random test value, such as difficulty
level 7, might be selected in a test variation for testing. If the
objective metric, for example the length of play time, of the
tested difficulty level 7 is shorter than that of the control
variation with a default difficulty level, the difficulty level
for the next round of experiment might be selected to be a
value closer to the default difficulty level. The selection of
the new difficulty level to be tested might also depend on
how large the reduction in the length of play time. If the
reduction is large, then the step size for selecting the test
value for the next round of experiment might be larger;
otherwise the step size might be smaller.

Generally speaking, the selection of the test value for the
next round of the experiment might depend on the sign and
the rate of the change in the objective metric of the test
variation compared with that of the control variation. As
shown in FIG. 6A, if the test variation leads to a worse
objective metric, the next test value to be tested 72, might
be selected along the negative direction 614 of the change
612 of'the tested test value Z1 compared with the default test
value Y. If the test variation leads to a better objective
metric, the next test value to be tested 72, might be selected
along the positive direction 616 of the change 612 of the
tested test value Z1 compared with the default test value Y.
The step size for choosing the next metric value to be tested
might be proportional to the rate of the change in the
objective metrics. By selecting test values in this way, the
application experiment system 108 might obtain the opti-
mized experience configuration 116 without testing all the
experience configurations 116 in the complete experience
configuration set.

In a further embodiment, each round of the experiment
might be constructed to test multiple test values, as illus-
trated in FIG. 6B. In an experiment where the test values
corresponds to a numerical range 620, such as the difficulty
levels in the above game software application example, the
numerical range might be divided into multiple regions
622-630, and one test value might be picked from each of the
regions in one round of the experiment. Within each region,
the test value might be selected in a similar way as described
above and illustrated in FIG. 6 A. A sub-optimized test value
might be obtained for each region. The obtained sub-
optimized test values from the multiple regions might be
compared using their respective object metrics or be tested
in an extra round of experiment to identify the overall
optimized test value.

Referring back to FIG. 4, if at operation 404 it is deter-
mined that the estimated number of users available for the
experiment is not large enough, the routine 400 proceeds to
operation 406 where a further determination is made as to
whether the developer 102 is willing to extend the time
period of the experiment so that more users might be
included in the experiment. Such information might be
obtained from the developer 102 through the interaction of
the developer 102 with a user interface presented by the
application experiment system 108. Alternatively, or addi-
tionally, the developer 102 might pre-set his/her preference
on extending the experiment time period in the experiment
configuration 106.

When deciding whether or not to extend the experiment
time period, there may be a tradeoff between the accuracy of

30

40

45

65

14

the experiment results and the time length of the experiment.
Generally speaking, the more users there are to participate in
the experiment, the more accurate the experiment results
would be, that is, the identified optimized experience con-
figuration 116 would be more likely to be the true optimized
experience configuration 116. To get more users involved in
the experiment, however, typically requires a longer experi-
ment time. On the other hand, to complete the experiment in
a short time period, there may not be enough users available
to participate in the experiment, which may lead to low
accuracy of the experiment results.

While in general it might be preferred to get as many users
as possible to be involved in the experiment at the expense
of'long experiment time, there might be situations where the
application experiment system 108 might have to conduct
the experiment with a limited number of users. For example,
the total number of users for a software application 120
might be small in nature. The number of experience con-
figurations 116 to be tested might be relatively large with
respect to the number of users. The experiment might be a
preliminary test that needs to be finished in a short time of
period and the accuracy of the experiment results is less
crucial. Depending on the specific situation a developer 102
might face, the developer 102 might instruct the application
experiment system 108 to choose either reducing the number
of experience configurations 116 to be tested or selecting
some users to participate in the tests of multiple experience
configurations 116. Reducing the number of experience
configurations 116 to be tested might help to keep the user
number for testing one experience configuration 116 at a
desired scale, whereas selecting some users to participate in
multiple tests might keep the number of tested experience
configurations 116 unchanged by sacrificing the accuracy of
the experiment results.

In FIG. 4, if it is determined that the experiment time
period can be extended at operation 406, the routine 400
proceeds to operation 408, where the time period T might be
expanded by an amount of AT. The routine 400 then returns
back to operation 402. If it is determined that the experiment
time period cannot be extended, the routine 400 proceeds to
operation 410, where the application experiment system 108
might determine whether a smaller set of experience con-
figurations 116 may be tested. The application experiment
system 108 might make this determination based on infor-
mation obtained from the developer 102 through a user
interface presented to the developer 102. Alternatively, or
additionally, the developer 102 might pre-set his/her pref-
erence on reducing the number of experience configurations
116 in the experiment configuration 106.

If, at operation 410, it is determined that the number of
experience configurations 116 can be reduced, the routine
400 proceeds to operation 412, where the number of the
experience configurations 116 might be reduced by selecting
a subset of the experience configurations 116 for testing. In
some embodiments, the selection of the subset of experience
configurations 116 might be performed by randomly choos-
ing experience configurations 116. In other embodiments,
the selection might be performed based on instructions
provided by the developer 102. For example, as discussed
above, the experiment configuration 106 might contain a test
factor/value priority 204 field, which specifies priorities
assigned to the test factors 208 and/or test values 210. Based
on the test factor/value priority 204, the application experi-
ment system 108 might first select experience configurations
116 corresponding to the test factor/values with high priority
to be included in the subset of experience configurations
116, and some experience configurations 116 corresponding

US 9,483,393 Bl

15

to low priority test factor/values might not be selected. It
should be understood that these examples are only illustra-
tive and should not be construed as limiting. Other ways of
selecting the subset of experience configurations 116 may be
utilized. From operation 412, the routine 400 proceeds to
operation 414, from which point the routine 400 proceeds as
discussed above.

I, at operation 410, it is determined that the number of
experience configurations cannot be reduced, the routine
400 proceeds to operation 420, where some user computing
devices 114 might be allocated with multiple experience
configurations 116 due to the insufficient number of avail-
able users. In one implementation, the multiple experience
configurations 116 allocated to one user computing device
114 might be tested in separate rounds. In other words, the
user might participate in multiple rounds of the experiment,
and in each round his’her computing device 114 might
receive a different experience configuration 116. It should be
noted that by involving one user in multiple rounds of the
experiment, the user’s behavior might be influenced by the
software application 120 that has been presented to the user
before. As such, the obtained objective metric 202 might be
biased, leading to inaccurate experiment results. From
operation 420, operation 418 or operation 416, the routine
400 proceeds to operation 422, where it ends.

In embodiments, the generated experiment strategy 118
might also include a user assignment for allocating experi-
ence configurations 116 to user computing devices 114
associated with the corresponding users 112. In one imple-
mentation, the user assignment might be generated by ran-
domly assigning the experience configurations 116 to avail-
able users. In another implementation, the user assignment
might be obtained by utilizing the hash value based assign-
ment method described in U.S. patent application Ser. No.
13/491,410, filed on Jun. 7, 2012 and entitled “Application
Experiment System.”

It should also be understood that the experiment strategy
118 might be dynamically updated based on current situa-
tions of the experiment. For example, the estimation of the
available number of users might be adjusted as the experi-
ment is being carried out. Based on the adjusted estimation,
the determinations made at operations 404, 406, 410 and
414, as well as the operations following those determina-
tions might be updated accordingly. It should be further
appreciated that the process of generating experiment strat-
egy 118 described in FIG. 4 is merely illustrative and that
other implementations might also be utilized.

FIG. 7 and the following description are intended to
provide a brief, general description of a suitable computing
environment in which the embodiments described herein
may be implemented. As briefly mentioned above, the
functionality implemented by the application experiment
system 108 may be provided as a service, such as a web
service, for performing experiments on a software applica-
tion 120 and identifying optimized experience configura-
tions for the software application 120. FIG. 7 is a system and
network diagram that shows an illustrative operating envi-
ronment 700 that includes a distributed execution environ-
ment 706 configured for providing access to the service,
according to one embodiment disclosed herein.

The distributed execution environment 706 can provide
instances of computing resources on a permanent or an
as-needed basis. The instances of computing resources pro-
vided by the distributed execution environment 706 may
include various types of resources, such as data processing
resources, data storage resources, data communication
resources, and the like. Each type of computing resource

20

25

30

40

45

55

60

16

may be general-purpose or may be available in a number of
specific configurations. Each type or configuration of an
instance of a computing resource may be available in
different sizes, such as large resources, consisting of many
processors, large amounts of memory, and/or large storage
capacity, and small resources consisting of fewer processors,
smaller amounts of memory, and/or smaller storage capacity.

Instances of data processing resources may be available as
virtual machine instances in a number of different configu-
rations. The virtual machine instances may be configured to
execute applications, including Web servers, application
servers, media servers, database servers, and other types of
applications. Instances of data storage resources may
include file storage devices, block storage devices, and the
like. Instances of remote desktop sessions might also be
utilized in various embodiments presented herein. A remote
desktop session may be established utilizing the remote
desktop protocol (“RDP”) or another similar protocol for
viewing and interacting with a graphical user interface
provided by another computer. It should be understood that
an instance may include any combination of the various
types of resources described above.

The instances of computing resources provided by the
distributed execution environment 706 are enabled in one
implementation by one or more data centers 704A-704N
(which may be referred to herein singularly as “a data center
704” or in the plural as “the data centers 704”). The data
centers 704 are facilities utilized to house and operate
computer systems and associated components. The data
centers 704 typically include redundant and backup power,
communications, cooling, and security systems. The data
centers 704 might also be located in geographically dispa-
rate locations. One illustrative configuration for a data center
704 that implements the concepts and technologies disclosed
herein for providing a service to perform experiments on a
software application and to identify optimized experience
configurations for the software application will be described
below with regard to FIG. 8.

As a customer of the distributed execution environment
706, the developer 102, may access the computing resources
provided by the data centers 704 over a network, such as the
network 702, the Internet, or any other networking topology
known in the art that connects the data centers 704 to the
developer computing system 104 associated with the devel-
oper 102. It should also be appreciated that combinations of
such networks might also be utilized.

The developer computing system 104 may be utilized to
configure aspects of the computing resources provided by
the distributed execution environment 706. In this regard,
the distributed execution environment 706 might provide a
Web interface through which aspects of its operation may be
configured. For instances, a Web browser application pro-
gram executing on the customer computing system 104
might be utilized to access the Web interface and configure
the operation of the distributed execution environment 706.
Alternatively, a stand-alone application program executing
on the customer computing system 104 might access an
application programming interface (“API”) exposed by the
distributed execution environment 706 for performing the
configuration operations. Other mechanisms for configuring
the operation of the distributed execution environment 706
might also be utilized.

FIG. 8 is a computing system diagram that illustrates one
configuration for a data center 704 that implements the
distributed execution environment 706, including the con-
cepts and technologies disclosed herein for performing
experiments on a software application and identifying opti-

US 9,483,393 Bl

17

mized experience configurations for the software applica-
tion. The example data center 704 shown in FIG. 8 includes
several server computers 802A-802F (which may be
referred to herein singularly as “a server computer 802” or
collectively as “the server computers 802”) for providing
instances of computing resources. The server computers 802
may be standard tower or rack-mount server computers
configured appropriately for providing the computing
resources described herein. For example, in one implemen-
tation the server computers 802 are configured to provide
instances 804A-804N.

In one embodiment, the instances 804A-804N (which
may be referred herein singularly as “an instance 804” or in
the plural as “the instances 804) are virtual machine
instances. As known in the art, a virtual machine instance is
an instance of a software implementation of a machine (i.e.
a computer) that executes programs like a physical machine.
Each of the servers 802 may be configured to execute an
instance manager 808 capable of instantiating and managing
the instances. In the case of virtual machine instances, for
example, the instance manager 808 might be a hypervisor or
another type of program configured to enable the execution
of multiple virtual machine instances on a single server 802,
for example. Each of the instances 804 may be configured to
execute all or a portion of an application. According to one
implementation, one or more instances 804 might be con-
figured to execute the service provided by the application
experiment system 108, as illustrated in FIG. 8. It should be
appreciated that although the embodiments disclosed herein
are described primarily in the context of virtual machine
instances, other types of instances of computing resources
can be utilized with the concepts and technologies disclosed
herein.

The data center 704 shown in FIG. 8 also includes a server
computer 802F reserved for executing software components
for managing the operation of the data center 704, the server
computers 802, the instances 804, and other resources within
the distributed execution environment 706. In particular, the
server computer 802F might execute the instance launch
manager 810 to receive instance launch requests from one or
more developer computing systems 104, and to instantiate
one or more of the instances 804 in response to the requests.

In the example data center 704 shown in FIG. 8, an
appropriate local area network (“LAN”) 812 is utilized to
interconnect the server computers 802A-802E and the server
computer 802F. The LAN 812 is also connected to the
network 702 illustrated in FIG. 7. It should be appreciated
that the configuration and network topology illustrated in
FIGS. 6 and 7 has been greatly simplified and that many
more computing systems, networks, and networking devices
may be utilized to interconnect the various computing
systems disclosed herein. Appropriate load balancing
devices or software modules might also be utilized for
balancing a load between each of the data centers 804A-
804N, between each of the server computers 802A-802F in
each data center 704, and between instances 804 of com-
puting resources provided by the distributed execution envi-
ronment 706.

It should be appreciated that the data center 704 described
in FIG. 8 is merely illustrative and that other implementa-
tions might be utilized. In particular, functionality described
herein as being performed by the instance launch manager
810 might be performed by one or more other components.
Additionally, it should be appreciated that the functionality
provided by these components might be implemented in

10

15

20

25

30

35

40

45

50

55

60

65

18

software, hardware, or a combination of software and hard-
ware. Other implementations should be apparent to those
skilled in the art.

FIG. 9 shows an example computer architecture for a
computer 900 capable of executing the program components
described above for performing experiments on a software
application and identifying optimized experience configu-
rations for the software application. The computer architec-
ture shown in FIG. 9 illustrates a conventional server
computer, workstation, desktop computer, laptop, tablet,
network appliance, PDA, e-reader, digital cellular phone, or
other computing device, and may be utilized to execute any
aspects of the software components presented herein. For
example, the computer architecture shown in FIG. 9 may be
utilized to execute the application experiment system 108
shown in FIG. 1 and described above.

The computer 900 includes a baseboard 902, or “moth-
erboard,” which is a printed circuit board to which a
multitude of components or devices may be connected by
way of a system bus or other electrical communication
paths. In one illustrative embodiment, one or more central
processing units (“CPUs”) 904 operate in conjunction with
a chipset 906. The CPUs 904 may be standard program-
mable processors that perform arithmetic and logical opera-
tions necessary for the operation of the computer 900.

The CPUs 904 perform operations by transitioning from
one discrete, physical state to the next through the manipu-
lation of switching elements that differentiate between and
change these states. Switching elements may generally
include electronic circuits that maintain one of two binary
states, such as flip-flops, and electronic circuits that provide
an output state based on the logical combination of the states
of'one or more other switching elements, such as logic gates.
These basic switching elements may be combined to create
more complex logic circuits, including registers, adders-
subtractors, arithmetic logic units, floating-point units, and
the like.

The chipset 906 provides an interface between the CPUs
904 and the remainder of the components and devices on the
baseboard 902. The chipset 906 may provide an interface to
a random access memory (“RAM”) 908, used as the main
memory in the computer 900. The chipset 906 may further
provide an interface to a computer-readable storage medium
such as a read-only memory (“ROM”) 910 or non-volatile
RAM (“NVRAM”) for storing basic routines that help to
startup the computer 900 and to transfer information
between the various components and devices. The ROM 910
or NVRAM may also store other software components
necessary for the operation of the computer 900 in accor-
dance with the embodiments described herein.

The computer 900 may operate in a networked environ-
ment using logical connections to remote computing devices
and computer systems through a network, such as the local
area network 920. The chipset 906 may include functionality
for providing network connectivity through a NIC 912, such
as a gigabit Ethernet adapter. The NIC 912 is capable of
connecting the computer 900 to other computing devices
over the network 920. It should be appreciated that multiple
NICs 912 may be present in the computer 900, connecting
the computer to other types of networks and remote com-
puter systems.

The computer 900 may be connected to a mass storage
device 918 that provides non-volatile storage for the com-
puter. The mass storage device 918 may store system
programs, application programs, other program modules,
and data, which have been described in greater detail herein.
The mass storage device 918 may be connected to the

US 9,483,393 Bl

19

computer 900 through a storage controller 914 connected to
the chipset 906. The mass storage device 918 may consist of
one or more physical storage units. The storage controller
914 may interface with the physical storage units through a
serial attached SCSI (“SAS”) interface, a serial advanced
technology attachment (“SATA”) interface, a fiber channel
(“FC”) interface, or other type of interface for physically
connecting and transferring data between computers and
physical storage units.

The computer 900 may store data on the mass storage
device 918 by transforming the physical state of the physical
storage units to reflect the information being stored. The
specific transformation of physical state may depend on
various factors, in different implementations of this descrip-
tion. Examples of such factors may include, but are not
limited to, the technology used to implement the physical
storage units, whether the mass storage device 918 is char-
acterized as primary or secondary storage, and the like.

For example, the computer 900 may store information to
the mass storage device 918 by issuing instructions through
the storage controller 914 to alter the magnetic characteris-
tics of a particular location within a magnetic disk drive unit,
the reflective or refractive characteristics of a particular
location in an optical storage unit, or the electrical charac-
teristics of a particular capacitor, transistor, or other discrete
component in a solid-state storage unit. Other transforma-
tions of physical media are possible without departing from
the scope and spirit of the present description, with the
foregoing examples provided only to facilitate this descrip-
tion. The computer 900 may further read information from
the mass storage device 918 by detecting the physical states
or characteristics of one or more particular locations within
the physical storage units.

In addition to the mass storage device 918 described
above, the computer 900 may have access to other com-
puter-readable storage media to store and retrieve informa-
tion, such as program modules, data structures, or other data.
It should be appreciated by those skilled in the art that
computer-readable storage media can be any available
media that provides for the storage of non-transitory data
and that may be accessed by the computer 900.

By way of example, and not limitation, computer-read-
able storage media may include volatile and non-volatile,
removable and non-removable media implemented in any
method or technology. Computer-readable storage media
includes, but is not limited to, RAM, ROM, erasable pro-
grammable ROM (“EPROM”), electrically-erasable pro-
grammable ROM (“EEPROM”), flash memory or other
solid-state memory technology, compact disc ROM (“CD-
ROM”), digital versatile disk (“DVD”), high definition
DVD (“HD-DVD”), BLU-RAY, or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium that
can be used to store the desired information in a non-
transitory fashion.

The mass storage device 918 may store an operating
system 930 utilized to control the operation of the computer
900. According to one embodiment, the operating system
comprises the LINUX operating system. According to
another embodiment, the operating system comprises the
WINDOWS® SERVER operating system from MICRO-
SOFT Corporation. According to further embodiments, the
operating system may comprise the UNIX or SOLARIS
operating systems. It should be appreciated that other oper-
ating systems may also be utilized. The mass storage device
918 may store other system or application programs and data
utilized by the computer 900, such as modules implementing

20

30

40

45

50

55

60

20

the functionalities provided by the application experiment
system 108 and/or any the other software components and
data described above. The mass storage device 918 might
also store other programs and data not specifically identified
herein.

In one embodiment, the mass storage device 918 or other
computer-readable storage media is encoded with computer-
executable instructions which, when loaded into the com-
puter 900, transforms the computer from a general-purpose
computing system into a special-purpose computer capable
of implementing the embodiments described herein. These
computer-executable instructions transform the computer
900 by specifying how the CPUs 904 transition between
states, as described above. According to one embodiment,
the computer 900 has access to computer-readable storage
media storing computer-executable instructions which,
when executed by the computer 900, perform the routines
described above with regard to FIGS. 3 and 4. The computer
900 might also include computer-readable storage media for
performing any of the other computer-implemented opera-
tions described herein.

The computer 900 may also include one or more input/
output controllers 916 for receiving and processing input
from a number of input devices, such as a keyboard, a
mouse, a touchpad, a touch screen, an electronic stylus, or
other type of input device. Similarly, the input/output con-
troller 916 may provide output to a display, such as a
computer monitor, a flat-panel display, a digital projector, a
printer, a plotter, or other type of output device. It will be
appreciated that the computer 900 may not include all of the
components shown in FIG. 9, may include other components
that are not explicitly shown in FIG. 9, or may utilize an
architecture completely different than that shown in FIG. 9.

Based on the foregoing, it should be appreciated that
technologies for performing experiments on a software
application and identifying optimized experience configu-
rations for the software application have been presented
herein. Moreover, although the subject matter presented
herein has been described in language specific to computer
structural features, methodological acts, and computer read-
able media, it is to be understood that the invention defined
in the appended claims is not necessarily limited to the
specific features, acts, or media described herein. Rather, the
specific features, acts, and mediums are disclosed as
example forms of implementing the claims.

The subject matter described above is provided by way of
illustration only and should not be construed as limiting.
Furthermore, the claimed subject matter is not limited to
implementations that solve any or all disadvantages noted in
any part of this disclosure. Various modifications and
changes may be made to the subject matter described herein
without following the example embodiments and applica-
tions illustrated and described, and without departing from
the true spirit and scope of the present invention, which is set
forth in the following claims.

What is claimed is:

1. A computer-implemented method for performing an
experiment on a software application, the method compris-
ing performing computer-implemented operations for:

receiving an experiment configuration from a computing

device associated with a developer of the software
application, the experiment configuration comprising a
test factor for the software application, a set of test
values for the test factor, and an objective metric to be
optimized in the experiment, the test factor represent-
ing a feature of the software application to be tested in
the experiment;

US 9,483,393 Bl

21

determining an experiment strategy based at least in part
upon the experiment configuration, the experiment
strategy comprising a plurality of experience configu-
rations of the software application, a number of rounds
of the experiment, and two or more of the test values to
be tested in individual rounds of the experiment,
wherein the plurality of experience configurations com-
prise different application settings;
identifying a plurality of user computing devices associ-
ated with the software application and allocating the
plurality of experience configurations to the plurality of
user computing devices according to the experiment
strategy, the plurality of experience configurations
being used to configure corresponding instances of the
software application executing on the plurality of user
computing devices and individual ones of the plurality
of experience configurations specifying one of the set
of test values to be used as a value of the test factor in
the corresponding instance of the software application;

causing a first round of the experiment to be performed on
one or more of the plurality of user computing devices
to test a first subset of test values;

analyzing experiment data related to the first round of the

experiment to identify a sub-optimized test value from
among the first subset of the test values based on the
objective metric;

including the sub-optimized test value into a second

subset of the test values to be tested in a second round
of the experiment;

causing the remaining experiment to be performed and

collecting additional experiment data related to the
experiment; and

analyzing the additional experiment data to identify an

optimized test value for the test factor from among the
set of test values based on the objective metric.

2. The computer-implemented method of claim 1,
wherein the experiment strategy further comprises a user
assignment for allocating one or more of the plurality of
experience configurations corresponding to the first subset
of the test values to corresponding user computing devices.

3. The computer-implemented method of claim 1,
wherein determining the experiment strategy comprises

estimating a number of users available for participating in

the experiment;

determining that the estimated number of users is not

large enough for the experiment; and

in response to determining that the estimated number of

users is not large enough, selecting a subset of test
values from the set of test values for the experiment,
wherein individual ones of the plurality of experience
configurations specify a test value from the subset of
test values for use as the value of the test factor in the
corresponding instance of the software application.

4. The computer-implemented method of claim 3,
wherein the experiment configuration further comprises a
priority assigned to individual ones of the set of test values,
and the selection of the subset of test values is based on the
priority.

5. A computer system for identifying an optimized expe-
rience configuration for a software application through an
experiment on the software application, the system com-
prising:

at least one computing device executing an application

experiment system configured to

receive an experiment configuration from a computing
device associated with a developer of the software
application, the experiment configuration compris-

10

15

20

25

30

35

40

45

50

55

60

65

22

ing a test factor for the software application, a set of
test values for the test factor, and an objective metric
to be optimized in the experiment, the test factor
representing feature of the software application to be
tested in the experiment;

determine an experiment strategy based at least in part
upon the experiment configuration, the experiment
strategy comprising a plurality of experience con-
figurations of the software application, a number of
rounds of the experiment, and two or more of the test
values to be tested in individual rounds of the
experiment, wherein the plurality of experience con-
figurations comprise different application settings;

identify a plurality of user computing devices associ-
ated with the software application and allocate the
plurality of experience configurations to the plurality
of user computing devices according to the experi-
ment strategy, the plurality of experience configura-
tions being used to configure corresponding
instances of the software application executing on
the plurality of user computing devices and indi-
vidual ones of the plurality of experience configu-
rations specifying one of the set of test values to be
used as a value of the test factor in the corresponding
instance of the software application;

cause a first round of the experiment to be performed on
one or more of the plurality of user con devices to
test a first subset of test values;

analyze experiment data related to the first round of the
experiment to identify a sub-optimized test value
from among the first subset of the test values based
on the objective metric;

include the sub-optimized test value into a second
subset of the test values to be tested in a second
round of the experiment;

cause the remaining experiment to be performed and
collect additional experiment data related to the
experiment; and

analyze the additional experiment data to identify an
optimized test value for the test factor from among
the set of test values based on the objective metric.

6. The computer system of claim 5, wherein the at least
one computing device implements the application experi-
ment system as a service.

7. The computer system of claim 5, wherein the one or
more test values for one of the test factors corresponds to a
numerical range, and wherein determining the experiment
strategy comprises:

dividing the numerical range into one or more regions;

selecting a test value from individual ones of the one or

more regions, wherein the selection of the test value is
based on experiment data obtained for test values in a
corresponding region.

8. The computer system of claim 7, wherein the at least
one computing device executing the application experiment
system is further configured to identify sub-optimized
experiment configurations for individual ones of the one or
more regions, wherein the optimized experience configura-
tion is identified based on the sub-optimized experiment
configurations.

9. The computer system of claim 7, wherein the selection
of the test value is based on objective metrics calculated
from the experiment data.

10. A non-transitory computer-readable storage medium
having computer-executable instructions stored thereupon
which, when executed by a computer, cause the computer to:

US 9,483,393 Bl

23

receive an experiment configuration from a computing
device associated with a developer of a software appli-
cation, the experiment configuration comprising a test
factor for the software application, a set of test values
for the test factor, and an objective metric to be
optimized in the experiment, the test factor represent-
ing a feature of the software application to be tested in
the experiment;
determine an experiment strategy based at least in part
upon the experiment configuration, the experiment
strategy comprising a plurality of experience configu-
rations of the software application, a number of rounds
of the experiment, and two or more of the test values to
be tested in individual rounds of the experiment,
wherein the plurality of experience configurations com-
prise different application settings;
identify a plurality of user computing devices associated
with the software application and allocate the plurality
of experience configurations to the plurality of user
computing devices according to the experiment strat-
egy, the plurality of experience configurations being
used to configure corresponding instances of the soft-
ware application executing on the plurality of user
computing devices and individual ones of the plurality
of experience configurations specifying one of the set
of test values to be used as a value of the test factor in
the corresponding instance of the software application;

cause a first round of the experiment to be performed on
one or more of the plurality of user computing devices
to test a first subset of test values;

analyze experiment data related to the first round of the

experiment to identify a sub-optimized test value from
among the first subset of the test values based on the
objective metric;

include the sub-optimized test value into a second subset

of the test values to be tested in a second round of the
experiment;

cause the remaining experiment to be performed and

collect additional experiment data related to the experi-
ment; and

analyze the additional experiment data to identify an

optimized test value for the test factor from among the
set of test values based on the objective metric.

11. The computer-readable storage medium of claim 10,
wherein the experiment strategy comprises a subset of the
test values to be tested in a round of the experiment, the
subset of the test values being determined based on experi-
ment data obtained in one or more previous rounds of the
experiment, a set of experience configurations generated
based on the subset of the test values, and a user assignment
for allocating the set of experience configurations to corre-
sponding user computing devices.

12. The computer-readable storage medium of claim 10,
wherein determining the experiment strategy comprises:

estimating a number of users available for the experiment;

determining that the estimated number of users is large
enough for the experiment; and

in response to determining that the estimated number of

users is not large enough, selecting a subset of expe-

25

30

40

45

24

rience configurations from experience configurations to
be tested in the experiment, wherein the subset of
experience configurations comprises the one or more
experience configurations allocated to the plurality of
user computing devices.

13. The computer-readable storage medium of claim 12,
wherein the selection of the subset of the experience con-
figurations is based on a priority specified in the experiment
configuration.

14. The computer-implemented method of claim 1,
wherein the one or more test values for one of the test factors
corresponds to a numerical range, and wherein determining
the experiment strategy comprises:

dividing the numerical range into one or more regions;

selecting a test value from individual ones of the one or

more regions, wherein the selection of the test value is
based on experiment data obtained for test values in a
corresponding region.

15. The computer-implemented method of claim 14, fur-
ther comprising identifying sub-optimized experiment con-
figurations for individual ones of the one or more regions,
wherein the optimized experience configuration is identified
based on the sub-optimized experiment configurations.

16. The computer-implemented method of claim 14,
wherein the selection of the test value is based on objective
metrics calculated from the experiment data.

17. The computer system of claim 5, wherein determining
the experiment strategy comprises:

estimating a number of users available for participating in

the experiment;

determining that the estimated number of users is not

large enough for the experiment; and

in response to determining that the estimated number of

users is not large enough, selecting a subset of test
values from the set of test values for the experiment,
wherein individual ones of the plurality of experience
configurations specify a test value from the subset of
test values for use as the value of the test factor in the
corresponding instance of the software application.

18. The computer system of claim 17, wherein the experi-
ment configuration further comprises a priority assigned to
individual ones of the set of test values, and the selection of
the subset of test values is based on the priority.

19. The computer-readable storage medium of claim 10,
wherein the one or more test values for one of the test factors
corresponds to a numerical range, and wherein determining
the experiment strategy comprises:

dividing the numerical range into one or more regions;

selecting a test value from individual ones of the one or

more regions, wherein the selection of the test value is
based on experiment data obtained for test values in a
corresponding region.

20. The computer-readable storage medium of claim 19,
having further computer-executable instructions to cause the
computer to identify sub-optimized experiment configura-
tions for individual ones of the one or more regions, wherein
the optimized experience configuration is identified based on
the sub-optimized experiment configurations.

#* #* #* #* #*

